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REACTION OF A PIEZOCEftAMIC SHELL TO CONCENTRATED EFFECTS* 

L.A. FIL'SHTINSKII aa L.A. RHIZHNIAR 

Equations are derived for the theory of shallow piezoceramic shells polarized along 
the generators. These equations are used to construct the Green's matrix and to 
investigate the reaction of an infinite and a finite shell to concentrated effects. 
The asymptotic is written down for the mechanical forces and moments as well as for 
the electrical field potential in the neighborhood of the point of application of 
the concentrated functional. 

Equations for piezoceramic shells of revolution have been obtained in /l/. Application 
of the asymptotic method /2/ to the derivation of the equations for the theory of piezoceramic 
shells is examined in /3/. 

1. Equations of a piezoceramic shell in displacements. Let a closed shallow 
piezoceramic shell be referred to an orthogonal coordinate system a,fi,~(a, fl coincide with 
the lines of principal curvature). The shell is polarized along the axis a. In this case 
the equations of state have the form /4/ 

aa = CASEY + C&p - edL zap = C,~E,B - e,,E~ 

0~ = c13sa + cl,+, - e&, Do = e,,a,b -t EASED 

D, = e3sa + e,seg + essEot D, = e,,E,, 

(1.1) 

Here so, 

D,l are the 
(~g,z~e,a~,eb, e,~ are components of the stress and strain tensors, E,, Eg,E,,D,,Dg, 
coresponding vector components of the electrical field intensity and the in- 

duction, cik are elastic, C?ih are pieeoelectric constants, aa Eli, e33 
ittivities of the medium. 

are the dielectric perm- 

Making use of the usual relationships of the theory of very shallow shells /2,5/ as well 
as of the Maxwell equations for dielectrics div D = 0.6 = -grad cp(cp is the field potential), 
we arrive at the system of equations in displacements 

LijUj = Pi, Lij = Lj* (i, j = 1,2,3, 4) 

Lph(+ aI2 + +-q 9 LIZ = $j (Cl3 + c*a) &a* 

(1.2) 

al= a/au, a, = ajafi, a,iazj = E_. 
a& agl 

Here uj(j = 1,2,3) are components of the displacement vector, 
components of the surface load vector, 
principal shell curvatures, 

P4 = 0, h, kl = R,-‘, k, = R,-’ 
u, = cp, Pl(i = 1,2,3) are 

are the shell thickness and 
and A and Bare the coefficients of the first quadratic form (for 

simplicity we later consider a cylindrical shell R,= 00, and in addition we set A = B = R,). 
It was assumed in the derivation of (1.2) that the shell is in a vacuum and its surfaces 

are not electrified. In this case it is possible to set D, = ET = 0, cp = cp (a, p). 

2. Fundamental solution of the system (1.2). At the points a,,&+ mT(m= 0.1, 
. . . . o- I), let a T-periodic system of concentrated forces with components 
P, = P, be applied to the shell (Fig.1). 

P, = P,,, P, = P,, 
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In this case we represent the solution of the system in the form 

'II of= di,‘Yi (I, j = 1, 2, 3. 4) ;,_.l! 7 

where Aif are tie corresponding cofactors of the matrix elements of 
the differential operaturs #Lijjj* While the functions {Flare relat- 
ed to the fundamental solution E(a,yf by 

PjE(at B) 

Yj=- Fl~s~Or v F~=h’/R~‘Q (2.2) 
a, = - c,,2gm, g = C*,E,, + Q&a 

The T-periodic fundamental solution Efrr,@f is determined 
from the equation 

(2.3) 

'i%e expression .&(x,y) is defined in 12.3). For shells from the piezoceramics PZT-4, 

PZT-5 and certain otiezs, the quantities z, are simple roots of the characteristic poly- 
nomial A,(Z) for each fixed k. 

3, ‘I,%@ principal part of the fundmntal solution. Tk agrees with the funda- 
mental solution of the operator &I (31, 8%) and has the form 
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m +I& OXP film Kv - &J sgn (a - Ml 

v-1 k=, 
(iko)’ A’ (2,) 

L=B+w, 6w=B~+w0~ Imh>O 

Here zV are roots of the characteristic polynomial 

A(z)=Lo(z, I)= 22~~~ 
&cl 

It can be shown that the following relations hold that are valid for any natural k: 

5 

2Re c 
v= 

(3.2) 

By using (3.2) closed expressions can be obtained for the higher derivatives of E,(a, fl). 
For instance 

(3.3) 

4. Green's matrix for a finite piezoceramic shell. We represent the components 
of the Green's matrix in the form (no summation over repeated subscripts) 

uij (a7 BV aoI PO) = uij’(af a,) + Aifyj (4.1) 

co 10 

G (a, B, ao, PO) = f Re BLk)exp [ik~&~‘] + E(a - ao, B - fk.) 

Here ~J(a,a,) is the general solution of the system (1.2) for pj = 0 (j = 1,2,3,4), Ba' 
are constants determined from the boundary conditions on the shell endfaces, E (a, p) is the 
fundamental solution of (2.4), ~~~(a,fi,a,,~~) is the displacement (i = 1,2,3) and potential 
of the electrical field (i = 4) at the point (a,p) ,due to the action of the concentrated 
force Pj(j = 1,2,3) or the charge P, at the point (a,,, PO). The second component in the expres- 
sion for the function G is the regular solution of the homogeneous equation (2.3). 

The forces and moments in the shell as well as the intensity vector and the electrical 
induction vector are expressed in terms of the Green's matrix canponents (4.1) by using (l.l), 
geometric relationships, and Maxwell's equations. 

The representations (4.2) afford the possibility of satisfying four mechanical and one 
electrical boundary condition'on each of the endfaces because of the slection of the constants 
B@) V and the functions uil” (a* ao). 

5. Action of radial concentrated forces on a cylindrical piezoceramic shell. 
Let us consider a piezoceramic shell finite in a, and closed in $ and loaded at the points 
a = a,,,/3 = PO + mT(m = O,l, . . ..a - 1) by a T-periodic system of radial concentrated forces. 

We assume that the shell is under moving-hinge clamping conditions, while the endfaces are 
covered by grouned electrodes. Then the mechanical and electrical boundary conditions on the 
endfaces a = 0 and a = I, take the form 

T1=M1=o=~=q=O (5.1) 

According to (1.2), (2.1) and (4.1) we have 

UPS = ~(a, B) = &YS + US,' (5.2) 

~3 = 'P (a, B) = &Ys + u,s" 

b,Ss = - clap, blSs = I- cSrn - c4p2s33 + 2esds - e&c,, - 
2e16ed4, + s33s’ - QS?-~l, b,= = L- c,,l - e,,c,,z + 
2e,,rs - el& - 2eBe,,c,, + e,,s?- c,,r*l, bssS = -_~,,g 
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b,4$ = c,,P~ b14’ = els (wQ~- cl37 -Y- c4.,q, b243 = 0 
m = wll + wp4, P = e33+ - e13C33 

zlo = zo, k” = Z,, z3” = iz,, 4’ = - i. 

where B,'fv = 1,2,...,6) are arbitrary constants. 
Results of computing the quantities 

along the coordinate a are represented in Figs.2 and 3 for a cylindrical shell from the piezo- 
ceramic PZT-5 /4/ loaded by radial concentrated forces PS for Rlih = 50, co = 6 and relative 
length of the shell 1#=5 L/RI= 1. The curves land 2 are construEted for PO= O,rl, = 0,51, and 
0.25Z0, respectively. The dashed curve corresponds to an infinite shell for the same values of 
the parameters. 

Fig.2 Fig.3 

For 1,&z the deflections in a finite shell subjected to radial forces applied at the 

points a* = 0.5, B* = mT (m= 0. f, . . ., 0 - 1) are practically in agreement with the corresponding 
deflections in an infinite shell. The average potential (8) equals zero at the endfaces for 
a finite shell, while it asymptotically approaches the lines C(P)= stO.5 according to the law 

for an infinite shell. 
ccp) = 0.5 sga (L 11 - Im tr exp (ir&l) 

Tfie asymptotic values of the bending moments and transverse forces in the neighborhood of 

the point of application of the concentrated functional have the form 

(5.4) 

The remaining mechanical, as well as electrical quantities, are bounded. 
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